首页>
外文OA文献
>Logarithmic tensor category theory for generalized modules for a
conformal vertex algebra, I: Introduction and strongly graded algebras and
their generalized modules
【2h】
Logarithmic tensor category theory for generalized modules for a
conformal vertex algebra, I: Introduction and strongly graded algebras and
their generalized modules
This is the first part in a series of papers in which we introduce anddevelop a natural, general tensor category theory for suitable modulecategories for a vertex (operator) algebra. This theory generalizes the tensorcategory theory for modules for a vertex operator algebra previously developedin a series of papers by the first two authors to suitable module categoriesfor a "conformal vertex algebra" or even more generally, for a "M\"obius vertexalgebra." We do not require the module categories to be semisimple, and weaccommodate modules with generalized weight spaces. As in the earlier series ofpapers, our tensor product functors depend on a complex variable, but in thepresent generality, the logarithm of the complex variable is required; thegeneral representation theory of vertex operator algebras requires logarithmicstructure. This work includes the complete proofs in the present generality andcan be read independently of the earlier series of papers. Since this is a newtheory, we present it in detail, including the necessary new foundationalmaterial. In addition, with a view toward anticipated applications, we developand present the various stages of the theory in the natural, general settingsin which the proofs hold, settings that are sometimes more general than what weneed for the main conclusions. In this paper (Part I), we give a detailedoverview of our theory, state our main results and introduce the basic objectsthat we shall study in this work. We include a brief discussion of some of therecent applications of this theory, and also a discussion of some recentliterature.
展开▼
机译:这是一系列论文的第一部分,在本文中,我们介绍和开发了自然的,通用的张量类别理论,以适用于顶点(算子)代数的适当模块类别。该理论概括了先前由前两位作者在一系列论文中开发的顶点算子代数模块的张量理论,适用于“共形顶点代数”或更合适的“ M \” obius顶点代数的模块类别。不需要模块类别是半简单的,并且可以容纳具有广义权重空间的模块,就像在前面的系列论文中一样,我们的张量积函子依赖于一个复数变量,但是在目前看来,复数变量的对数是必需的;一般顶点算子代数的表示理论需要对数结构,该工作包括目前的一般证明,可以独立于较早的论文系列阅读,由于这是一个新理论,我们将对其进行详细介绍,包括必要的新基础材料。 ,针对预期的应用,我们开发并介绍了该理论的各个阶段在证明所依据的自然的,一般的设置中,有时设置比通常需要的主要结论更通用。在本文(第一部分)中,我们对我们的理论进行了详细的概述,陈述了我们的主要结果,并介绍了我们将在这项工作中研究的基本对象。我们简要讨论了该理论的最新应用,并讨论了一些近期文学。
展开▼